Comparison of Two Variations of Neural Network Approaches to the Prediction of Protein Folding Pattern

نویسندگان

  • Inna Dubchak
  • Stephen R. Holbrook
  • Sung-Hou Kim
چکیده

We have designed, trained and tested two types of neural networks for the prediction of protein folding pattern from sequence. Here we describe the differences in the networks and compare their performance on a variety of proteins. Both network representations are generally successful in predicting protein fold and can also be used together to confirm a prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran

The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...

متن کامل

Prediction of Bending Angle for Laser Forming of Tailor Machined Blanks by Neural Network

Tailor-made blanks are sheet metal assemblies with different thicknesses and/or materials and/or surface coatings. A monolithic sheet can be machined to make the required thickness variations that is referred as tailor machined blanks. Due to the thickness variation in tailor machined blanks, laser bending of these blanks is more complicated than monolithic plates. In this article, laser formin...

متن کامل

Comparison of Artificial Neural Network and Multiple Regression Analysis for Prediction of Fat Tail Weight of Sheep

A comparative study of artificial neural network (ANN) and multiple regression is made to predict the fat tail weight of Balouchi sheep from birth, weaning and finishing weights. A multilayer feed forward network with back propagation of error learning mechanism was used to predict the sheep body weight. The data (69 records) were randomly divided into two subsets. The first subset is the train...

متن کامل

Comparison of the Accuracy of Nonlinear Models and Artificial Neural Network in the Performance Prediction of Ross 308 Broiler Chickens

This study aimed to investigate and compare nonlinear growth models (NLMs) with the predicted performance of broilers using an artificial neural network (ANN). Six hundred forty broiler chicks were sexed and randomly reared in 32 separate pens as a factorial experiment with 4 treatments and 4 replicates including 20 birds per pen in a 42-day period. Treatments consisted of 2 metabolic energy le...

متن کامل

Comparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses

Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. International Conference on Intelligent Systems for Molecular Biology

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1993